
Brian Friesen, et al.!
!
DOE COE Performance Portability 2017

Performance
Portability
Experiences at
NERSC

-	1	-	

2017	Aug	23	

Summary

•  We	a-empted	to	implement	OpenMP	4.x	and	
Kokkos	in	3	codes	at	NERSC:	
–  BoxLib	(C++/Fortran	AMR	framework)	
–  BerkeleyGW	(F90	mat.	sci.	code)	
–  Dslash	(C++	QCD	kernel)	

•  So	far,	results	have	ranged	from	underwhelming	to	
mixed	
–  Our	hands	are	sDll	full	with	the	“portable”	part;	have	
barely	touched	the	“performance”	part	

•  The	goal	was	to	run	the	same	code	on	both	GPUs	
and	KNL	(but	that	was	probably	too	ambiUous)	

-	2	-	

Common Themes

•  OpenMP	4.x:	results	vary	wildly	with	compiler	
–  Some	things	crash	the	compiler	(Cray,	IBM,	PGI)	
–  Some	things	compile	but	generate	the	wrong	answer	
(Intel,	Cray)	

–  Some	things	compile	and	run	but	have	bad	performance	
(GCC)	

– Would	be	nice	if	OpenMP	spec	defined	the	behavior	of	the	
target	construct	if	no	device	is	available	

•  Kokkos:	requiring	a	memory	model	for	a	perf.port.	
framework	is	OK,	unless	the	exisUng	code	already	
has	one	(BoxLib)	
–  Then	your	code	“port”	can	become	a	complete	rewrite	

-	3	-	

Geometric multigrid solver in
BoxLib

-	4	-	

Algorithm overview

•  Geometric	mulUgrid:	an	iteraUve	method	to	solve	linear	
problems	on	structured	grids	

•  C++	framework;	calls	Fortran	kernels	to	do	FLOPs	
•  4	main	kernels	in	GMG:	

–  RestricDon	–	average	fine	grid	onto	coarse	grid	
–  ProlongaDon	–	interpolate	coarse	grid	onto	fine	grid	
–  RelaxaDon	–	a	few	iteraDons	of	linear	solve	on	a	grid	

•  E.g.,	2	Jacobi	iteraDons,	4	Gauss-Seidel	red-black,	etc.	
–  Bo\om	solve	–	exact	soluDon	of	linear	system	on	coarsest	grid	

•  Can	be	a	direct	method	since	coarsest	grid	is	small	

•  Kernels	1-3	are	stencil-ish,	the	4th	is	dense	linear	algebra	

-	5	-	

Code overview

-	6	-	

Code overview

-	7	-	

BerkeleyGW kernel

-	8	-	

Algorithm overview

•  F90	MPI+OpenMP	mat.	sci.	code	
–  Predicts	excited-state	properDes	of	materials	
–  Uses	GW	method	(alternaDve	to	DFT)	–	lots	of	FFTs	and	
dense	linear	algebra	

•  “GPP”	kernel	from	BGW	is	~400	LOC	kernel	in	a	
single	file	

•  Wri-en	in	Fortran,	also	ported	to	C++	to	test	
Kokkos	

-	9	-	

Results so far with Kokkos and
OpenMP 4.x

-	10	-	

BoxLib + Kokkos

•  BoxLib	already	has	a	huge	infrastructure	of	data	
structures	and	funcUons	which	operate	on	2D/3D	
grids	
–  CompuDng	volume	intersecDons	of	grids	
–  Coarse-fine	boundaries	on	AMR	grids	
–  Ghost	zone	exchange	
–  Regridding/load	balancing	

•  Almost	none	of	this	was	compaUble	with	the	
Kokkos	memory	model	(“Views”)	and	had	to	be	
rewri-en	

-	11	-	

-	12	-	

BerkeleyGW + Kokkos

•  No	complicated	data	structures	in	GPP	kernel;	
implemenUng	Kokkos	on	ho-est	loops	was	
straighdorward	

•  (Of	course,	we	had	to	convert	the	whole	kernel	
from	Fortran	to	C++	first)	

-	13	-	

OpenMP in BoxLib and BGW

•  OpenMP	does	not	support	reducUons	over	complex	

numbers	in	C/C++	(but	it	does	in	Fortran)	
•  GCC	requires	the	“simd”	construct	to	parallelize	among	

threads	in	a	threadblock	when	using	“#pragma	omp	
target	teams	distribute	parallel	for”	(Intel	does	not;	
Cray	is	??)	

•  Intel	requires	OMP_NUM_THREADS=(max	possible	#	
threads	on	arch)	or	else	the	code	segfaults	(GCC	and	
Cray	do	not)	

•  Intel	OpenMP	3.x	and	4.x	give	similar	performance	for	
“#pragma	omp	teams	distribute	parallel	for	simd	
schedule(dynamic)”,	but	…	
–  If	you	put	in	the	“simd”	statement	that	GCC	needs,	then	code	
runs	4x	slower	

-	14	-	

OpenMP in BoxLib and BGW

•  GCC:	“target”	construct	has	a	major	performance	
bug	wherein	threads	exiUng	a	parallel	region	are	
destroyed,	not	“cached”	(GCC	bugzilla	#80859)	

•  CCE	8.6.0	and	8.6.1	segfault	when	compiling	a	
BoxLib	source	file	with	a	“target”	construct	

•  Without	“target”	construct,	CCE	8.6.0	and	8.6.1	
have	link	error	in	BoxLib	

•  IBM:	XLC	v13.1	fails	to	link	>1	compilaUon	units	
together	if	they	both	include	a	header	file	which	
contains	a	“target”	region	
–  Fixed	in	v14.0,	but	now	the	compiler	segfaults	

-	15	-	

BerkeleyGW + Kokkos

-	16	-	

	
Approach	 Architecture	 Timings	(seconds)	
Fortran	(Sequential)	 KNL	 973.5	
C++	(Sequential)	 KNL	 1193.9	
Fortran	(OpenMP	3.0)	 KNL	 12.7	
C++	(OpenMP	3.0)	 KNL	 12.8	
C++	(OpenMP	4.5)	 KNL	 16.4	
C++	(Kokkos+OpenMP)	 KNL	 34.2	
	
	
Approach	 Architecture	 Timings	(seconds)	
Fortran	(Sequential)	 PowerPC	 935.9	
C++	(Sequential)	 PowerPC	 1263.5	
Fortran	(OpenMP	3.0)	 PowerPC	 41	
C++	(OpenMP	3.0)	 PowerPC	 70.1	
C++	(Kokkos+OpenMP)	 PowerPC	 17.03	
C++	(Kokkos+CudaUVM)	 Pascal	 3.93	
	

BerkeleyGW + OpenMP

-	17	-	

 OpenMP 3.0 OpenMP 4.5
Intel 1.08 3.7 (same even if we add simd)
GCC 12.9 16.6 (13.8 with simd)
Cray 7.08 (non-vectorized) Too long did not wait for it to end...
	

Summary

-	18	-	

Common Themes

•  OpenMP	4.x:	results	vary	wildly	with	compiler	
–  Some	things	crash	the	compiler	(Cray,	IBM,	PGI)	
–  Some	things	compile	but	generate	the	wrong	answer	
(Intel,	Cray)	

–  Some	things	compile	and	run	but	have	bad	performance	
(GCC)	

– Would	be	nice	if	OpenMP	spec	defined	the	behavior	of	the	
target	construct	if	no	device	is	available	

•  Kokkos:	requiring	a	memory	model	for	a	perf.port.	
framework	is	OK,	unless	the	exisUng	code	already	
has	one	(BoxLib)	
–  Then	your	code	“port”	can	become	a	complete	rewrite	

-	19	-	

National Energy Research Scientific Computing Center

-	20	-	

